
Theoretical aspects of dimming an incandescent lamp 
Abstract 
A dimmer is an electronic device that controls alternate voltage applied to a lamp through delivering a selected 
portion of the mains sinusoid. Engineer, designing a dimmer needs to estimate how big this portion should be to get 
a desired luminance level. This article uses a model of incandescent lamp, tungsten resistivity, and human eye 
spectral efficiency to derive dependency of produced luminous flux over the voltage, gives a simple analytical 
function that describes this dependency with good accuracy (±2% comparing to the model). 

Structured Abstract 
Purpose To discover a dependency of luminous flux produced by an incandescent 

lamp on the applied voltage 
Methodology/Approach 
 

Numerical analysis on a theoretical model of an incandescent lamp 
 

Findings 
 

Analytical function for approximate estimating of luminous flux for the 
applied voltage with ±2% accuracy 

Research limitations/implications Model does not encounter thermal conduction and convection in the lamp. 
 

Practical implications (if applicable) Provided function has some degree of dependency on the lamp's design 
(namely, nominal filament temperature) 

 

Definitions 
Process of controlling some output value (such as voltage U or luminous flux L) we will denote as a control function 

)1)ξ(0)(ξ( ≤≤ pp , defined on the control parameter  )10( ≤≤ pp : 
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Each of )ξ( p  monotonously increase on the defined range. Control functions defined on a different (other than p ) 

argument we will denote in this article as )(ξ̂ x . 

Commonly used are linear ( ( ) const/ξ =∂∂ pp ) and logarithmic ( ( ) const/lnξ =∂∂ pp ) control functions. 

To implement a desired control function )(ξ pL , we needs to know what is )(ξξ UL  dependency.  The following 

chapters give an attempt to derive )(ξξ UL  using a model suggested in (Agraval 1996). 

Incandescent Lamp Model 
An incandescent lamp is characterized with few nominal values: PN – power consumption, UN – nominal voltage, LN – 
nominal luminous flux, produced by the lamp at nominal voltage. The flux is produced by filament, incandesced to 
nominal working temperature TN. When lower voltage U<UN is applied, operating temperature T of filament is lower 
TN and therefore it produces less luminosity L. 

Filament Resistance 
Power, consumed by a lamp, is expressed with Ohm low:  

 
)()(

22

TR
U

TR
UUIP

Nς
===  (2) 

where )1)(,10(, =≤≤ NTςςς  defines dependency of filament resistance over the temperature relatively to its 
nominal resistance RN, which can be evaluated via PN and UN: 
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Dependency )(Tς  for tungsten is not linear in the working range of temperatures (1000-2500K). For this model we 

will use polynomial approximation of tungsten resistance ρ, [Harang 2003]: 
 ρρρρ CTBTAT ++≈ 2)(  (4) 



)(Tς  can be expressed via )(Tρ  as the following: 
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Filament Temperature 
During operation, filament radiates electromagnetic energy and dissipates heat via conduction and convection. To 
estimate radiation, filament is modeled [Agraval 1996] as a simple non-ideal blackbody that obeys Plank's radiation 
law: 
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where λλ dT),I(  is power radiated between wavelength  λ  and λλ d+ , ),( Tє λ  - tungsten emittance, and A is 
filament area. The total power emitted over all wavelengths is: 

 4)()( ATTєTI σ=  (7) 
where σ is the Stefan-Boltzman constant and )(Tє  is average emittance over all wavelengths, which is 
approximated as a second order polynomial (Harang 2003): 

 ЄЄЄ CTBTATє ++= 2)(  (8) 
In a steady-state operation, power applied to the lamp is in balance with power radiated and dissipated to outside 
ambient. Dissipation has two constituents – conduction and convection. Agraval in [Agraval 1996] has suggested a 
reasonable way of accounting dissipation as a factor of input power: 
 PTIP ϑ+= )(  (9) 
Solving (8)for P: 
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Substituting left side of (10)with right side of (2): 
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Using (11), we may derive )(ξ̂2 TU : 
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Figure 1 illustrates dependency )(ξ̂ TU  
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Figure 1. Dependency of T on fraction of applied voltage ξU for different TN 

Luminance 

Not all power radiated by filament has its effect on luminous flux. Some of the energy is absorbed by bulb glass and 
dissipated as heat. Although, this absorption depends on λ, we will simplify this absorption to a constant factor η<1.  
Major part of the emitted energy is not visible to human eye. This is described as spectral efficiency function S(λ), 
approximated as the following [Agraval 1996]: 
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Thus, total luminous flux produced by a lamp can be defined as: 
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where 
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Thereby, control function Lξ  can be expressed as a function of T: 

 
)(
)()()(ˆ

NN
L TF

TF
L
TLTξ ==  (16) 

For working range of temperatures and visible area, emissivity є(λ,T) can be approximated as the following 
[Larrabee 1957]: 
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where T is in °K and λ in nm. Substituting (17) in (16) and integrating numerically (16) we get dependency, 
shown on Figure 2: 
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Figure 2. Dependency ξL(T) for different TN 

Solving Luminance vs. Voltage 
Using T as a parametric variable, we may numerically compute (11), (15) and graphically solve dependency ξL(ξU), 
as shown on Figure 3: 
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Figure 3. Dependency ξL(ξU)for different TN 

As Figure 3 indicates, ξL(ξU) is affected by a design factor – nominal temperature TN. 



Approximation 
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Figure 4. Dependency ξL(ξU

3) 

As it appears (see Figure 4), dependency ξL(ξU
3) looks quite linear for ξU

3>0.2 and has some higher-order dependency 
for ξU

3<0.2. Therefore we will try approximating ξL(ξU) as two polynoms: 
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Value ξL at x=1 is equal to 1 by nature of ξ, therefore c can be expressed via k: 

 111)1(ξ~ −=⇔=−⇒= kcckL  (19) 

To solve a and x0 we will require continuality of Lξ
~

 and its derived function Lξ& , this gives us two equations with 
three unknowns: 
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Solving (20) for a and x0 we get them expressed via k: 
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Thereby, Lξ

~
 depends on a single constant k, which is then wiggled around to find a value giving lowest RMS 

deviation ( )2)(~)( xLL x ξξ − . Table 1 lists selected values for few most common nominal temperatures TN, Figure 5 
illustrates this dependency, and Figure 6 shows modeled curves and values, approximated with (20). 

Table 1. k values for some TN 

TN k 
2800 1.067 
2900 1.054 
3000 1.043 
3100 1.034 
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Figure 5. k variations over TN 
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Figure 6. Modeled curves and approximated values (marks) 

Since designer of a dimmer may not exactly know nominal temperature of the dimmed lamp, k can be selected for 
an average nominal temperature. Suggested value k=1.05 gives ±2% error (against model) for TN in range 2800-3100 
°K. For this k, equation (20) becomes practically concrete: 
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Sine Wave Dimmer 
A sine wave dimmer implemented with pulse-width modulation controls applied voltage with a cycle duty, which we 
will denote as control function ξt. Modulation frequency is usually chosen much higher than mains frequency. 
Therefore, RMS of output voltage is proportional to cycle duty, and control function ξU as simple as: 

 ( ) )()( pp ttU ξξξ =  (23) 

To make ξL(p), linear on parameter p, function ξt(p) should be defined as the following: 
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Applying (24) to equation (22) we get  
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Phase Control Dimmer 
When implementing an AC dimmer based on phase control technique, one needs to tabulate cycle duty values ti as 
a function of desired luminance level pi.  Following the same approach, we introduce control function ξt: 
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where t is cycle duty (time when the switch is on) and tM is the mains half period, and f  is the mains frequency. 
Average power P  applied to the lamp, can be evaluated as the following: 
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where UA is voltage amplitude. Integrating (27) we can define ξP as the following 
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Considering that PU ξξ =2 , and substituting (28) to (22) we may estimate )(ξξ~ tL .  
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Figure 7. Dimmer control functions ξL and ξU 

Applying approach used in (24) function ξt(p) is defined as following: 
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Although, reverse function of (28) is not solvable analytically, it can be solved numerically. 

Conclusions 
As a result of numerical modeling, the following approximation functions are suggested: 
Estimation of produced luminous flux over the voltage: 

L = L0 * ((U/U0 < 0.575) ?  1.369 * (U/U0) ^ 4 : (1.05 * (U/U0) ^ 3 – 0.05); 
Tabulation of cycle duty over the control parameter p 
 t = (p < 0.1496) ? (0.925 * (p) ^ -4) : (0.984 * (p – 0.05) ^ -3); 
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